FH-Net: A Fast Hierarchical Network for Scene Flow
Estimation on Real-world Point Clouds

Lihe Ding*, Shaocong Dong*, Tingfa Xu, Xinli Xu, Jie Wang, and Jianan Lif

Beijing Institute of Technology
{dean.dinglihe, dscdycl1010295799, xx1lbigbrother,
jwangl23bit}@gmail.com, {lijianan,ciomxtfl}@bit.edu.cn

Abstract Estimating scene flow from real-world point clouds is a fundamental
task for practical 3D vision. Previous methods often rely on deep models to first
extract expensive per-point features at full resolution, and then get the flow either
from complex matching mechanism or feature decoding, suffering high compu-
tational cost and latency. In this work, we propose a fast hierarchical network,
FH-Net, which directly gets the key points flow through a lightweight Trans-flow
layer utilizing the reliable local geometry prior, and optionally back-propagates
the computed sparse flows through an inverse Trans-up layer to obtain hierarchical
flows at different resolutions. To focus more on challenging dynamic objects, we
also provide a new copy-and-paste data augmentation technique based on dynamic
object pairs generation. Moreover, to alleviate the chronic shortage of real-world
training data, we establish two new large-scale datasets to this field by collecting
lidar-scanned point clouds from public autonomous driving datasets and anno-
tating the collected data through novel pseudo-labeling. Extensive experiments
on both public and proposed datasets show that our method outperforms prior
state-of-the-arts while running at least 7 X faster at 113 FPS. Code and data are
released at https://github.com/pigtigger/FH-Net.

Keywords: Scene flow, Real-world point cloud, Transformer, Copy-and-paste

1 Introduction

Scene flow estimation from point clouds, which accurately measures point movement
between consecutive frames, serves as an fundamental step for downstream tasks like 3D
motion segmentation [32] and tracking [45], and thus plays an increasingly important
role in robotics [3] and autonomous driving [46]. Previous works [18,10] for scene flow
estimation, however, mainly focus on synthetic datasets [20] with CAD models and
pseudo lidar points [21] obtained from disparity images where point clouds are dense
and under direct correspondence, totally different from the lidar-scanned and leading to
catastrophic performance when move to real world.

Conventional scene flow estimation paradigm Fig. 1a [18,10] uses a U-Net [31]
style deep model to obtain per-point fused feature from two consecutive frames at full
resolution, and then decode flow from the fused feature, one other line of works Fig. 1b
[27] try to extract point feature without temporal fusion and apply complex feature

* Equal contribution. TCorrespondence to: Jianan Li and Tingfa Xu.

https://github.com/pigtigger/FH-Net

2 Ding and Dong et al.

7 ; 1
i ° : E
; Feature Decode | ! :
' ° 11oPCL m !
1 " |
i PR N S o ® o
i [J PS o Feature Match— @ ° i
| Flow 1! Flow |
i PC1PC2 i pPC2 R .
i (a) FlowNet3D | (b) FLOT |
bbb fpiobdpiodobeiobbeiobobsioboindvivintoiiodulvioiuiviobuiviotobtioiuioioiobeiniohyirin
E tracking, velocity estimation.. motion segmentation.. E
| TKeypoints T T T T ! P o :
| ime o' AU S W
; D, o P R
- e — — @ L e e |
i : e L ® | AL LONeLS 1
1 : > ; Sparse Flow | i Dense Flow
| i ! Trans-up layer '
popepe : Trans-flow layer : i i :
T s (c) Ours

Figure 1. Most previous works (a) fuse two consecutive point clouds in deep feature space from
which to decode the flow, or (b) match the features extracted from two point cloud separately by a
deep network to predict the flow. Our approach (c) directly computes key points flow () by
aggregating the spatial offsets from the source point (red) to its neighboring target points (blue) via
the well-designed local relationship modeling then use trans-up layer to get the hierarchical flow.

matching algorithm to compute the flow. However, both of these methods need to get
the full resolution deep point feature at first then predict the flow, which not only can
not well meet the various demand of downstream tasks (i.e., velocity estimation needs
real-time instance-level flow while motion segmentation needs higher resolution flow)
but also brings high computational cost and latency thus hard to be deployed on real-
world autonomous vehicle and robots. To deal with these problems, we propose a fast
hierarchical network Fig. 1c, FH-Net, which can output different resolution flows from
different layers while running much faster than real-time.

Specifically, we first extract the key points’ geometric features for each frame through
shallow hierarchical set abstraction layers [28], then utilize a novel transformer-based
Trans-flow layer to directly compute key points’ flow by applying point-wise attention in
the local region between two consecutive frames. We take the offset from source point
to every target point as the so-called value while get query and key from the feature of
source and target point respectively. Followed by a well-designed subtraction relation
mechanism, we can obtain the source key point flow directly by leveraging the strong
guide from local relative position instead of decoding from deep feature or applying
expensive feature matching mechanism after fully up-sampling like previous methods as
shown in Fig. 1.

Through Trans-flow layer, we can get the sparse keypoint flows which well meet the
need of object level flow in scenarios like 3D tracking. However, dense prediction tasks
like segmentation, requires more fine-grained flows at higher resolution. So optionally,
we need to up-sample the predicted flow from Trans-flow layer. A trial solution is
interpolation up-sampling, which however only weights flow by distance and suffers
large propagation error when close points have different flow. To address this problem,
we propose Trans-up layer sharing the same mechanism as Trans-flow layer to up sample

FH-Net: A Fast Hierarchical Network for Real-world Scene Flow Estimation 3

the flow. For arbitrary high resolution point, by attending each of its neighbor points in
low resolution point set both in spatial and feature space, we can dynamically weight the
sparse flows and aggregate them to get the dense flow. Benefit from this design, we can
get up-sampled flow at each resolution through hierarchical Trans-up layers and fed it
into downstream tasks with higher flexibility and efficiency. Benefit from the hierarchical
flow outputs, we further present a Hierarchical loss which calculates the EPE (every
point error) of intermediate flows in each up-sampling layer to better constrain the flow
accuracy and speed up the convergence.

Based on the proposed fundamental Trans-flow and Trans-up layers, we build our
FH-Net with series version, FH-L, FH-R and FH-S with flexible combinations of the
above modules to trade off between complexity and efficiency, which can adapt to
various tasks. Additionally, dynamic objects is commonly of small number in a single
frame, which poses challenges to learn the prediction of more important foreground flow.
To tackle this problem, inspired by [44,8], we propose a new data augmentation strategy
which during training randomly select objects from pre-built dynamic objects database
and augment them with different strategy, i.e., dropout, down-sampling, to generate
object pairs then paste them in two frames respectively.

Furthermore, to mitigate the problem of lacking real-world training data for scene
flow estimation, we build two new point cloud scene flow datasets named SF-KITTI and
SF-Waymo by annotating general autonomous driving dataset i.e. KITTI [7], Waymo [34]
with pseudo sceneflow labels. Specifically, we compute every foreground point’s label
from its gt box’s pose transform between two frames and annotate background point
via ego-motion obtained from IMU. We note that the recent released dataset [15] shares
similar ideas. The key difference are it only focuses on foreground point and different
processing strategies for ground point.

Extensive experiments show our FH-Net achieves state-of-the-art lidar-scanned point
cloud scene flow estimation results both on public Lidar-KITTI [9,7] and our more
challenging large scale dataset SF-Waymo with faster inference speed and significant
reduced parameters compared with previous methods [9,43,18]. Furthermore, we also
achieve competitive results on no-lidar-scanned dataset FlyingThings3D [20] and Stereo-
KITTI [21], which shows the great generality of our method.

The key contributions of this work are as follows:

e We propose a fast hierarchical architecture, which outputs accurate hierarchical
scene flow on real-world point clouds with high efficiency.

e We introduce a new data augmentation strategy which improves predicted flow’s
accuracy especially on more challenging dynamic objects.

e We construct two lidar-scanned point cloud scene flow datasets to the community,
which can facilitate the research on real-world scene flow estimation.

e We establish new state-of-the-art results on Lidar-KITTI and SF-Waymo.

2 Related Works

Scene flow on Point Clouds. While there is extensive literature on traditional 3D
scene flow [38,13,42,14,36,37,25], we pay more attention to recent learning-based
methods[20,40,6,26,30,24] which have shown advantages in many aspects. Pioneer

4 Ding and Dong et al.

work FlowNet3D[18] directly consumed point cloud and estimated scene flow through
an encoder-decoder architecture. FlowNet++[41] further used geometric constraints to
get more accurate flow. HPLFlowNet[10] projected point clouds into permutohedral
lattices then got flow from Bilateral Convolutional Layers. Inspired by PWC-Net[33],
PointPWCNet[43] estimated scene flow in a coarse-to-fine fashion. FLOT[27] estimated
scene flow through optimal transport and Meteor-Net[19] improved the accuracy of
the inferred flow utilizing multiple temporal information. Recently, Gojcic et al.[9]
estimated foreground flow and background flow respectively with weakly supervision.
Other works[23,16] also explored the unsupervised/self-supervised sceneflow estimation
because of the absence of annotated real-world scene flow dataset.

Transformer and attention. Transformer architectures with attention mechanisms have
recently revolutionized computer vision research. For 2D image, Dosovitskiy et al.
[5] treat images as sequences of patches. Hu et al. [12] and Ramachandran et al.[29]
applied scalar dot-product self-attention within local image patches and Zhao et al. [47]
developed a family of vector self-attention operators. Recently, Zhao et al. [48] and
Guo et al.[11] introduced vector and dot-product transformer into 3D point cloud to
better extract geometric features in a single frame. While in this work we use attention
mechanism to better model the local relationship across consecutive frames.

3 Methodology

Given two consecutive point clouds, Py at frame ¢ and Q) at frame ¢ + 1, the task of
scene flow estimation aims to predict the translation of every point in Py from frame ¢ to
frame ¢ + 1.

3.1 Network Architectures

Fig. 2 presents the overall workflow of our FH-Net, which comprises four key steps: i)
Feature embedding: get key-points with shallow features for each frame; ii) Trans-flow
layer: compute every key point’s flow by directly aggregating the spatial vectors between
source point and target point set; iii) Trans-up layer: upsample previous flow based on
the similarity between sparse and dense points both in spatial and feature space; iv) Flow
propagation: propagate the flow to raw resolution.

Feature embedding. This step aims to sample a subset of keypoints from the input
point cloud, and enrich each of the keypoints with local geometric features. We apply
two sequential set abstractions [28] to Py and @, outputting two keypoint sets, P, =
{(x,u;) ivjl and Q2 = {(yi,v;) ?]:21’ respectively, where x;,y; € N denote xyz
coordinates and u;, v; € RC denote embedded local features.

Trans-flow layer. The trans-flow layer outputs the scene flow Fy = { fPeRs }f\fl for
P5. It computes each flow element as a weighted sum of the spatial offsets from a source
keypoint in P to its neighboring target keypoints in Q5 using transformer attention
mechanism, through the following two steps:

FH-Net: A Fast Hierarchical Network for Real-world Scene Flow Estimation 5

| l
Jsali _ (Trans-flow layer < N3N T rans.un laver
§<\ . SA R SA ¢ I) R]

Trans-up layer \ A/f N
¥ 1
'/. \ =3 T ®%000 y / //////>}
PCL Key points 1 7, /// L K *% 4
- p /' - // .}'..,,.-\o_' o._, — FP -
. x\ 1R e ! / / (L.)) |
i /i LN e ° il
&) -SA- -sA- | . Y | /0 [~ o ///f[/1 w
| S ~—_—— N\ e
S Sparse flow Dense flow Raw resolution flow
PC2 Key points 2
® source point from PC1 @ target point from PC2 virtual raw PC1 virtual raw PC2 point to propagate source point + flow predicted flow

Figure 2. Overall architecture. FH-Net first obtains keypoints from set abstraction layers (SA), then
uses Trans-flow layer to compute each key point’s flow by directly aggregating the spatial vectors
between source point and target neighbor point set through local region relationship modeling.
The following trans-up layer is adopted to dynamically upsample the key points’ flow which are
then propagated to the raw resolution by Flow propagation module (FP).

Neighborhood grouping: For source keypoint p; = (x;, u;) in Py, we first use ball
query to group its spatially neighboring points in @, forming a target candidate set:

Qb ={a; = (;,v;) | | y5 — @i |2< R}L, M

where R is a preset radius and M is the number of neighboring points.
Cross-attention: We take p; as query point and {q; };Vil as key points, and compute
pair-wise attention weight as:

a;j =7 (p(u;) —Y(v;) + o(y; — i), 2

where ¢ and 1) are learnable point-wise linear transformations, ¢ is a relative position
encoding. «y is a mapping function, learned by a MLP, that produces an attention weight
by considering both feature and spatial relations.

Attentional aggregation: Given the attention weight, we directly take the positional
offset between p; and q; as value, and compute the translation f? for p; as a weighted
sum of the positional offsets with all the key points:

M
= pleiy)(y; — i), 3)
j=1

where p is a normalization function, softmax hereby.

Cross-frame feature enhancement: After obtaining the low-resolution flow, it will
inevitably introduce noise if we upsample the flow rely on structure feature from single
frame only. Therefore, in addition to the aggregation of the flow, the Trans-flow layer
also fuse the cross-frame features for further usage. Specifically, for source keypoint p;,
we integrate its corresponding local context from Qs:

uj= MAX {h(C(us,v5,0 (y; — %)} “

where u) denotes enhanced features, C denotes concatenation in channel dimension, h
denotes learnable linear transformation, MAX is element-wise max pooling.

6 Ding and Dong et al.

Trans-up layer. Let P, = {(z!, ull)}iill be the keypoint set (N7 > Ny), output
by the first set abstraction layer on Py. The trans-up layer aims to get the scene flow

={fle R?’}ivzll for Py, given the predicted flow F for P;.

Generally, we follow the similar transformer attention mechanism as in trans-flow
layer. For a target point @} in P;, we first construct its neighboring point set in P,
through neighborhood grouping. Then we take the target point x} as guery, and the
source points in the neighboring point set as keys, and compute pair-wise attention
weights through cross attention. Finally, we take the given flows of these source points
as values, and compute the flow f! for x} through attentional aggregation. Optionally,
we update the feature u} by applying Eq. (4) to P; and P; for further flow refinement.

Fig. 4 shows that benefited from Trans-up layer, the intermediate flow not only
becomes denser but also gets refined by considering the integrity and correlation of local
regions which can conquer the influence of outliers.

Flow propagation layer. We simply use 3D interpolations to upsample scene flow F}
to the final output Fp instead of Trans-up layer since there are no extracted features
corresponded to the raw resolution points. Optionally, to mitigate the propagation error,
a flow refinement residual learned from the last layers’ feature can be added to the
output flow. Specifically, we upsample the last layers’ feature to the raw resolution by
3D interpolations and feed it into a MLP layer then added to the interpolation result:

14 MLP(7;}, 5
Zuw ot Zuw o) ®)

where is the local region satisfies || ; — xJ |2 < R.

3.2 Hierarchical Loss

C . 2 .
Our FH-Net can predict hierarchical scene flows {{ fik |i=17,._, Ny, } } ke’ which enables
us to add supervisions on each flow hierarchy during optimization, to improve predictive
accuracy and speed up convergence:
2 1 M
Ly = kZO Ak Fk Zl Bi
= i=

f° ©)
2

i Ji

I Target candidate point

@ Sourcepoint @ Pred target point @ Virtual raw point

Figure 3. Attention visualization of Trans-flow layer. Brighter points have higher attention
weights and prediction is obtained by aggregating the offset from source point to these four
activated point (we draw raw points in gray here for auxiliary understanding).

FH-Net: A Fast Hierarchical Network for Real-world Scene Flow Estimation 7

(a) flow from Trans-flow layer (b) up-sampled by Trans-up layer (c) full resolution

Figure 4. Hirachical flow visualization in Lidar-KITTI. red denotes source key point in a certain
resolution, blue denotes the ground truth target points and arrows denotes the flow. gray
points are raw Py points for reader to better understanding local structure.

where f'ik denotes the ground-truth flow corresponding to fF,)}, is the balance weight for
hierarchy k, and 3; is set to 5 and 0.5 for foreground and background points, respectively.

3.3 FH-Net Families

Based on the above fundamental layers, we provide three versions of FH-Net: FH-R
is a standard version whose architecture specifications are listed in Tab. 1 FH-L is a
lite version where residual refinement process is excluded during flow propagation,
hence with less parameters and higher speed; FH-S is an advanced venison equipped
with an extra segmentation module [4,35] to divide the point cloud into foreground
and background points [9,1], whose flows are predicted by our model and by using the
ego-motion from IMU sensors, respectively.

Table 1. Architecture specs of FH-R. SA: set abstraction.

layer type R (m) sampling rate group num MLP width
SA layer 0.5 0.5x 16 [32,32,64]
SA layer 1 0.25% 16 [64,64,128]
Trans-flow 10 1x 64 [128,256], [3,64,128], [128,512,1]
Trans-up 0.6 2x 64 [64,64], [256,128,64], [64,256,1], [3,64,64]
Flow propagation 0.5 4x 3 [256,256,128,3]

3.4 Data Augmentation

Our proposed data augmentation method first generates dynamic object pairs from a
established object database then pastes them to the well designed safe area.

Dynamic object pairs generation. We first establish a dynamic object database by
cropping a large number of independent dynamic object point clouds from all training
data. During training, we take out the point cloud of one or more dynamic objects, then
for each object we apply random downsampling and part dropout strategy to generate a
pair of objects which is closer to the lidar scanned pattern as shown in Fig. 5 (a). Then
we paste one of the object pairs to the current frame with random pose 77, and paste the

8 Ding and Dong et al.

Select Obj Part Dropout Down Sampling

Select Obj Part Dropout Down Sampling

(a) Dynamic object pair (b) Safe area searching and paste

Figure 5. Data augmentation pipeline. green denotes safe area, red and blue denote points from
two frames respectively.

other one with random pose 1% in the next frame. At the same time, we must ensure that
the transformation from 7 to T5 conforms to the motion law of real object. In this way,
a dynamic object pair is established, and the scene flow can be calculated as follows:

F_,=TP -T P, @)

where P; € R* denotes the homogeneous points of first object in box coordinate and
F_,» € R*isthe homogeneous flow.

Safe area searching for object paste. Importantly, we need to prevent the pasted
objects from overlapping with existing scenes in the raw frame, which does not happen
in the real world. Inspired by [17], we first pillarize the points of current frame, and
divide them into A * w pillars in BEV (bird eye view). The pillars with points less than
threshold is noted as P-empty, the safe area where object can be pasted. Both box; and
box4 should be located in the safe area. We further carry out morphological corrosion on
the 2D P-empty image from BEV perspective to get stricter safe area of current frame as
shown in Fig. 5 (b). As we first paste box; then paste boxs according to the motion law,
which is more convenient to implement, it can be ensured to great extent that boxs is
also located in safe area as long as the constraints of motion law are met.

4 Real-world Dataset Creation

We build a large-scale 360° point cloud scene flow dataset named SF-Waymo as well as
a smaller one SF-KITTI, which are more in line with the real scene based on the general
automatic driving dataset, Waymo and KITTIL.

Data collection. We collect real-world point cloud pairs from Waymo and KITTI as well
as 3D gt boxes and ego-motion annotations, then process them by removing the ground
points with preset height threshold as ground points are useless for understanding scene
motion. For KITTI, we also crop the point cloud within the view of front camera where
annotations like 3D boxes are available. In general, our SF-Waymo contains 100 scenes,
total 20k pairs and SF-KITTT has 20 scenes, total 7k pairs.

FH-Net: A Fast Hierarchical Network for Real-world Scene Flow Estimation 9

Stereo-KITTI

SF-KITTI

Figure 6. Comparisons of point density and correspondence between our SF-KITTI and
previous Stereo-KITTI dataset. Red denotes source point, denotes gt flow plus source
point and blue denotes target point.

Tab. 2 provides more details and specific comparisons between our new proposed
datasets with existing ones. Our datasets are closer to real scene with obvious advantages
in scale, temporal frames, providing bidirectional flow and points semantic label.
Pseudo label. Observing that the scene flow of background is mainly generated by ego
motion, while foreground flow is the combination of ego motion and dynamic object’s
movement, we divide points into background and foreground using gt boxes and compute
label respectively. In addition, we also compute bidirectional flow between two frames.
For background points P} at frame ¢, the forward flow from time ¢ to time ¢ + 1 is

F}?OT =Ty, P’ — P}, ®)

where T5; denotes the pose transform from PC to PCj5. For foreground dynamic object
points Plf cropped by gt box, the forward flow can be written as:

F!

for — Tbom,QTb;i,IPIJC - Plf7 (€]

where Ty, 2 and Ty, 1 respectively denote the bbox’s posture in PCy and PCy with
vehicle coordinate, box; and boxs can be matched by object ID. The backword flow can
be calculated symmetrically:

Fp,. = T2 Py — Py, (10)

F} i = Tyoon Ty , P — P (1)

Table 2. Statistics of Different Datasets. DC: Direct point-to-point correspondence.

Dataset Total Train Test Pattern Temporal DC FOV
FlyingThings3D 23k 19k 3824 synthetic X v 360°
Stereo KITTI 150 X 150 disparity projection X v 90°
Lidar-KITTI 142 X 142 lidar-scanned X X 90°
SE-KITTI 7k 6400 600 lidar-scanned v X 90°
SF-Waymo 20k 17k 3k lidar-scanned v X 360°

10 Ding and Dong et al.

Table 3. Datasets set-loss comparisons. Foreground set-loss is only computed by foreground
points from two frames.

Dataset FlyingThings3D Stereo KITTI ~ Lidar-KITTI =~ SF-KITTI =~ SF-Waymo
Set-loss. [m)] 0 0 0.205 0.149 0.117
Foreground set-loss, [m] 0 0 - 0.137 0.077

Visualization. Fig. 6 provide the visualization of some objects in Stereo-KITTI and our
SF-KITTI. It can be seen that the points in Stereo-KITTTI are in direct correspondence:
for every source point in the first frame, we can find its matching point in the second
frame, thus the green points and blue points almost coincide with each other in the first
row of the figure. In addition, Stereo-KITTI is obtained from disparity images, where
the points are dense and regular, it also has a large gap compared with the real-world.
While in our SF-KITTI, since points are scanned by Lidar, they are sparse and not in
direct correspondence, which is more inline with the real-world.

Label accuracy. We further verify that our pseudo labels are also accurate compared
with Lidar-KITTT (labels obtained from carefully annotated KITTI-Sceneflow dataset).
As GT flow is unavailable in real-world, we introduce Set-loss as a metric to evaluate
the accuracy of flow annotations. Set-loss measures the degree of overlap between two
point clouds pcy, pce (With ny and ny points, respectively) by averaging the point-to-set
distance for every point in pc; and pca:

1
ni + ng

(X min (lo-s)+ 3 min (o -m). (2

x;EPCc1 xjEpce

Given two consecutive point cloud frames P and @ as well as the flow labels f, we then
compute the set loss between P + f and @ to evaluate the accuracy of flow annotations.
Ideally, for synthetic datasets FlyingThings3D and Stereo-KITTI (KITTI-Sceneflow),
where points are in one to one correspondence, the set loss is zero. For real-world
datasets like Lidar-KITTI, SF-KITTI and SF-Waymo, more accurate flow labels should
also have smaller set loss. Significantly, the labels of Lidar-KITTI are computed by
projecting points to image plane then assigning them the carefully annotated labels
from KITTI-Sceneflow, which have been used widely. As shown in Tab. 3, the set-
loss of SF-Waymo and SF-KITTT is lower than Lidar-KITTI and becomes smaller on
foreground objects, which proves that the annotations of SF-Waymo and SF-KITTI,
though generated from bounding boxes, are satisfactorily accurate and even better than
those of existing real-world dataset.

S5 Experiments

To evaluate the behavior of our FH-Net, we conduct comprehensive experiments on
Lidar-KITTT [9,7], Stereo-KITTI and FlyingThings3D and the proposed SF-Waymo
datasets. First, we describe settings of experiments, and then extend into results of our
method. Further, we conduct extensive ablation studies to verify the effectiveness of
FH-Net in detail.

FH-Net: A Fast Hierarchical Network for Real-world Scene Flow Estimation 11

Table 4. Evaluation results on Lidar-KITTI.

Method Training set EPE3D| [m] Acc3DST Acc3DR? Outliers| Speed (Hz) Parameters
FlowNet3D[18] FT3D 0.722 0.03 0.122 0.965 15.6 4,800k
PointPWC-Net[43] FT3D 0.39 0.387 0.55 0.653 13.2 30,000k
FLOT[27] FT3D 0.653 0.155 0.313 0.837 0.9 440k
Rigid3DSceneFlow([9] FT3D 0.535 0.262 0.437 0.742 7.2 7,700k
FH-L FT3D 0.531 0.20 0.397 0.825 112.6 680k
FlowNet3D[18] SF-KITTI 0.289 0.107 0334 0.749 15.6 4,800k
PointPWC-Net[43] SF-KITTI 0.275 0.151 0.405 0.737 13.2 30,000k
FLOT[27] SE-KITTI 0.271 0.133 0424 0.725 0.9 440k
FH-L SF-KITTI 0.255 0.241 0.538 0.683 112.6 680k
FH-R SF-KITTI 0.156 0.341 0.636 0.612 57.3 1,500k
Rigid3DSceneFlow[9] FT3D + SemanticKITTI 0.15 0.521 0.744 0.45 7.2 7,700k
FH-S SF-KITTI + SemantcKITTI 0.096 0.698 0812 0.367 33.8 5,300k

Table 5. Evaluation results on SF-Waymo.

Method Training set EPE3DJ [m] Acc3DST Acc3DR? Outliers) Speed (Hz) Parameters
FlowNet3D[18] SF-Waymo 0.225 0.230 0.486 0.779 9.3 4,800k
PointPWC-Net[43] SF-Waymo 0.307 0.103 0.231 0.786 1.0 30,000k
FESTA[39] SF-Waymo 0.223 0.245 0.272 0.765 6.2 5,400k
FH-L SF-Waymo 0.243 0.212 0.508 0.652 66.7 680k
FH-R SF-Waymo 0.211 0.209 0.522 0.621 33.6 1,500k
FH-S SF-Waymo 0.175 0.358 0.674 0.603 24.4 5,300k

5.1 Experimental Settings

Implementation Details. In our experiments, we set epochs to 150, batch size to 8, 4
for experiments on SF-KITTI and SF-Waymo, respectively. We train FH-Net by Adam
optimizer with learning rate of 0.001. For hierarchical loss in Eq. (6), we set ag = 0.2,
a1 = 0.2 and oy = 0.6, especially. In terms of data augmentation strategy, we paste 3
cars, 1-5 pedestrian and 1-4 cyclists with 0.4 probability of random down-sampling, as
well as dropout. Notably, all models are trained end-to-end from scratch.

Evaluation Metrics. We take 3D end-point-error (EPE3D) as the main evaluation metric,
defined as the mean Lo distance between the ground truth and predicted scene flow. In
addition, strict accuracy (Acc3DS), relaxed accuracy (Acc3DR) and Outliers are used to
describe the performance of models.

5.2 Results on Lidar-KITTI

Setup. Lidar-KITTTI [9,7] is a lidar-scanned point cloud scene flow dataset with ground
truth from back projecting 3D points to Stereo-KITTI [22,21]. We train FH-Net on
SF-KITTI with data-augmentation strategy referred in Sec. 3.4 and compare it with
current SOTA methods [18,43,27,9], on Lidar-KITTI dataset. The results of previous
methods trained on FlyingThings3D are from [9] and we also re-train them on SF-KITTI
with the same settings as FH-Net for fair comparision. We train the segmentation branch
of FH-S with semantic-KITTI[2] dataset. In addition, following [18,10,9], we remove
the ground points by a preset height threshold, cause they are meaningless to scene
motion understanding. All methods are measured on a single RTX 3090 GPU.

12 Ding and Dong et al.

)u.h’bvum-.z

FlowNet3D (epe:0.32) PointPWC (epe:0.26) Ours (epe:0.18)

Figure 7. Qualitative results on Lidar-KITTI. red denotes PC1 points, denotes predicted
points and blue points are the ground truth.

Results. Tab. 4 shows our FH-Net achieves an EPE3D accuracy of 0.096, superior to
SoTA method Rigid3DSceneFlow [9], as well as obvious advantages in terms of speed
(about 5x). In addition, the elite version FH-L achieves competitive performance with
fewer parameters (0.681/) and higher inference speed (112.6 fps). Compared with [9],
the params of FH-L are reduced by 91.2% and the speedup is measured 15x.

Speed. Compared with current methods, FH-Net shows tremendous advantages in terms
of speed. All three versions of FH-Net (FH-L, FH-R, FH-S) outperform all other methods
in inference speed, achieving an extremely outstanding performance. With elite version
(FH-L), we further speed up the inference to an amazing level of 112.6 fps at a sacrifice
of little accuracy drop, while maintaining high-performance 0.255 EPE3D.
Visualization. We select some representative scenarios to visualize our performance and
give some analysis. As shown in Fig. 7, previous works fail to fit the wide range object
movement for lacking local position information, while ours predicts behave well with
the help of strong local relative position.

5.3 Results on SF-Waymo

Setup. We train all methods on SF-waymo training set and evaluate them on SF-Waymo
validation set. Other settings are the same as Sec. 5.1.

Results. Empirically, our method surpasses all other methods and achieves the state-of-
the-art EPE3D accuracy of 0.175 with higher inference speed and fewer parameters. For
example, we outperform FESTA [39] by 0.048 EPE3ED and 4 x speedup in inference

Table 6. Evaluation results on no-lidar-scanned dataset

Method Training set EPE3D Method EPE3D
FlowNet3D [18] FT3D 0.177 FlowNet3D [18] 0.114
HPLFlowNet [10] FT3D 0.117 PointPWC-Net [43] 0.059
Rigid3DSceneflow [9] FT3D 0.042 FLOT [27] 0.052
FH-R FT3D 0.098 Rigid3DSceneflow [9] 0.052
FH-S SE-KITTI + FT3D | 0.072 FH-R 0.054

(a) Results on Stereo-KITTI (b) Results on FlyingThings3D

FH-Net: A Fast Hierarchical Network for Real-world Scene Flow Estimation 13

efficiency. Notably, the lite version FH-L achieves amazing speed (66.7Hz) with slight
drop in accuracy, Tab. 5 illustrates all results on SF-Waymo.

Speed. Due to the lightweight design of architecture, our method outperforms all other
methods in inference speed. Compared with FESTA (6.2 fps), our FH-Net still performs
much better (24.4 fps, 33.6 fps and 66.7 fps). Moreover, we notice even in the large-
scale SF-Waymo dataset, our FH-Net still exceeds the requirement of real-time scene
flow prediction, showing great possibilities for autonomous driving.

5.4 Results on No-lidar-scanned Dataset

We also report the results on no-lidar scanned datasets such as Stereo-KITTI and Fly-
ingThings3D. Results in Tab. 6 indicate that our well-designed architecture for real-world
scene flow estimation can well generalize to human-made data. Notably, on such datasets
our method does not perform as well as on real-world datasets like Lidar-KITTI and
SF-Waymo. Cause points in Stereo-KITTI and FlyingThings3D datasets always have
direct correspondence, our method that estimates target points has poorer performance
than Rigid3DSceneflow[9] that adopts matching strategy.

5.5 Ablation Studies

Tab. 7 shows the ablation results based on FH-L. Models are trained on SF-KITTT and
evaluated on Lidar-KITTI, unless otherwise specified, analyzed as follows:

Effect of Trans-flow layer. We replace Trans-flow layer with other operators such as
taking the average of candidate flows or directly using the nearest point’s offset as flow.
Tab. 7d shows that Trans-flow layer has obvious superiority.

Effect of Trans-up layer. Tab. 7b demonstrates that upsampling the sparse flow through
Trans-up layer can better modeling the local region’s relationship and get more accurate
flow than simply linear interpolation. We also observe that the interacted features is
beneficial in the Trans-up layer.

Effect of position encoding. Tab. 7h shows that considering the semantic feature
similarity as well as the spatial similarity by adding positional encoding in trans-flow
layer leads to apparent improvement, which indicates that the local geometry distribution
plays an important role when predict the flow.

Refinement in flow propagation Tab. 7f illustrates that adding residual refinement in
flow propagation module can help mitigate some propagation errors as we expected. We
think that the refinement module plays an important role in case of occlusion.

Effect of hierarchical loss. Tab. 7c shows that intermediate flow supervision are ben-
eficial, which is consistent with our assumptions that the more accurate intermediate
flows also lead to better performance of the final prediction. We also find that expanding
foreground weight by five times significantly boost the performance.

Effect of data augmentation. Tab. 7a shows the effectiveness of our new proposed data
augmentation method with different number of pasted dynamic objects. Furthermore, we
also evaluate the foreground EPE3D to investigate the performance gain from foreground
dynamic object pair paste strategy. The result on Tab. 7a is consistent with our assump-
tions that increasing the number and diversity of dynamic objects can significantly boost

14 Ding and Dong et al.

Table 7. Ablations studies

Car Ped Cyc|EPE3D* EPE3D Linear Trans F.I|EPE3D [Mo, A1, A2] [Bo, B1] | EPE3D
X X X 0.278 0.308 v X X | 0459 X X 0.306
0 15 14| 0276 0.301 X v X | 0314 0.5,0.5,0 X 0.298
3 15 14| 0.127 0.255 X v /| 0255 0.6,0.2,0.2 1,1 0.265
6 1-5 14| 0.106 0259 0.6,0.2,02 5,05 | 0.255

(a) Data augmentation: * de- (b) Trans-up layer:FIde- (c) Hierarchical loss: \ and 3
notes the error of foreground. notes feature interaction. are hyperparameters of loss.

TF Avg N | EPE3D Method Train set Validation set | EPE3D FR ‘ EPE3D
X v X| 1384 FlowNet3D FT3D SF-Waymo/eval | 0.834 X | 0.255
X X V| 1025 FlowNet3D SF-Waymo/train SF-Waymo/eval | 0.225 v | 0223
v X X| 025 FH-L FT3D SF-Waymo/eval | 0.673

FH-L SF-Waymo/train SF-Waymo/eval | 0.243

(d) Trans-flow layer: (e) Training data: We train baseline model and (f) FR: res-
TF,Avg,N denote trans- FH-L on commonly used training set FT3D and idual flow

flow, average, nearest. SF-Waymo. refinement.
Method Pre-train set Fine-tune set Validation set | EPE3D Pos.enc ‘ EPE3D
FlowNet3D FT3D Stereo-KITTI Stereo-KITTI | 0.144 X 0.278
FH-L FT3D Stereo-KITTI Stereo-KITTI| 0.110 v 0.255

FlowNet3D SF-KITTI = Stereo-KITTI Stereo-KITTI | 0.114
FH-L SE-KITTI Stereo-KITTI Stereo-KITTI | 0.079

(g) Pre-train and fine-tune: We pre-train the baseline (h) Position
and our FH-L on our dataset then fine-tune on others. encoding

the performance especially on more challenging foreground objects.

Effect of training data. In Tab. 7e and Tab. 4, we analyze the effect of our new proposed
SF-KITTT and SF-Waymo by re-training models on them and compare the results with
those trained on FT3D. It can be seen that the EPE3D is obviously reduced both on
Lidar-KITTI and SF-Waymo, which proves that our new dataset is more friendly to
the real-world sceneflow esitamtion. Furthermore, we evaluate the effectiveness of our
datasets by using it to pretrain the model then fine-tune on other public datasets, Tab. 7g
shows that the network can achieve better performance by learning more challenging
real-world scenes in our new proposed dataset.

6 Conclusion

In this paper, we present a fast hierarchical framework named FH-Net which can output
hierarchical flows and maintains high inference speed. We also propose a new copy-
and-paste data augmentation method to focus more on challenging dynamic objects and
establish two real-world sceneflow dataset for real-world scene flow estimation.
Acknowledgements This work was financially supported by the National Natural Sci-
ence Foundation of China (No. 62101032), the Postdoctoral Science Foundation of
China (No. 2021M690015), and Beijing Institute of Technology Research Fund Program
for Young Scholars (No. 3040011182111).

FH-Net: A Fast Hierarchical Network for Real-world Scene Flow Estimation 15

References

10.

11.

13.

14.

15.

16.

18.

19.

20.

21.

22.
23.

. Behl, A., Paschalidou, D., Donné, S., Geiger, A.: Pointflownet: Learning representations for

rigid motion estimation from point clouds. In: CVPR (2019)

. Behley, J., Garbade, M., Milioto, A., Quenzel, J., Behnke, S., Stachniss, C., Gall, J.: Se-

mantickitti: A dataset for semantic scene understanding of lidar sequences. In: ICCV (2019)

. Chen, S., Li, Y., Kwok, N.M.: Active vision in robotic systems: A survey of recent develop-

ments. [JRR (2011)

. Choy, C., Gwak, J., Savarese, S.: 4d spatio-temporal convnets: Minkowski convolutional

neural networks. In: CVPR (2019)

. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., De-

hghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

. Fan, H., Yang, Y.: Pointrnn: Point recurrent neural network for moving point cloud processing.

arXiv preprint arXiv:1910.08287 (2019)

. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision

benchmark suite. In: CVPR (2012)

. Ghiasi, G., Cui, Y., Srinivas, A., Qian, R., Lin, T.Y., Cubuk, E.D., Le, Q.V., Zoph, B.: Simple

copy-paste is a strong data augmentation method for instance segmentation. In: CVPR (2021)

. Gojcic, Z., Litany, O., Wieser, A., Guibas, L.J., Birdal, T.: Weakly supervised learning of

rigid 3d scene flow. In: Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. pp. 5692-5703 (2021)

Gu, X., Wang, Y., Wu, C,, Lee, Y.J., Wang, P.: Hplflownet: Hierarchical permutohedral lattice
flownet for scene flow estimation on large-scale point clouds. In: CVPR (2019)

Guo, M.H., Cai, J.X., Liu, Z.N., Mu, T.J., Martin, R.R., Hu, S.M.: Pct: Point cloud transformer.
Computational Visual Media 7(2), 187-199 (2021)

. Hu, H., Zhang, Z., Xie, Z., Lin, S.: Local relation networks for image recognition. In: ICCV

(2019)

Huguet, F.,, Devernay, F.: A variational method for scene flow estimation from stereo sequences.
In: ICCV (2007)

Jaimez, M., Souiai, M., Gonzalez-Jimenez, J., Cremers, D.: A primal-dual framework for
real-time dense rgb-d scene flow. In: ICRA (2015)

Jund, P., Sweeney, C., Abdo, N., Chen, Z., Shlens, J.: Scalable scene flow from point clouds
in the real world. IEEE Robotics and Automation Letters (2021)

Kittenplon, Y., Eldar, Y.C., Raviv, D.: Flowstep3d: Model unrolling for self-supervised scene
flow estimation. In: CVPR (2021)

. Lang, A.H., Vora, S., Caesar, H., Zhou, L., Yang, J., Beijbom, O.: Pointpillars: Fast encoders

for object detection from point clouds. In: CVPR (2019)

Liu, X., Qi, C.R., Guibas, L.J.: Flownet3d: Learning scene flow in 3d point clouds. In: CVPR
(2019)

Liu, X., Yan, M., Bohg, J.: Meteornet: Deep learning on dynamic 3d point cloud sequences.
In: ICCV (2019)

Mayer, N., Ilg, E., Hausser, P., Fischer, P., Cremers, D., Dosovitskiy, A., Brox, T.: A large
dataset to train convolutional networks for disparity, optical flow, and scene flow estimation.
In: CVPR (2016)

Menze, M., Heipke, C., Geiger, A.: Joint 3d estimation of vehicles and scene flow. ISPRS
(2015)

Menze, M., Heipke, C., Geiger, A.: Object scene flow. ISPRS (2018)

Mittal, H., Okorn, B., Held, D.: Just go with the flow: Self-supervised scene flow estimation.
In: CVPR (2020)

16

24.
25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.
48.

Ding and Dong et al.

Mustafa, A., Hilton, A.: Semantically coherent 4d scene flow of dynamic scenes. [JCV (2020)
Newcombe, R.A., Fox, D., Seitz, S.M.: Dynamicfusion: Reconstruction and tracking of
non-rigid scenes in real-time. In: CVPR (2015)

Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4d reconstruction by
learning particle dynamics. In: ICCV (2019)

Puy, G., Boulch, A., Marlet, R.: Flot: Scene flow on point clouds guided by optimal transport.
In: ECCV (2020)

Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: Deep hierarchical feature learning on point
sets in a metric space. arXiv preprint arXiv:1706.02413 (2017)

Ramachandran, P., Parmar, N., Vaswani, A., Bello, I., Levskaya, A., Shlens, J.: Stand-alone
self-attention in vision models. arXiv preprint arXiv:1906.05909 (2019)

Rempe, D., Birdal, T., Zhao, Y., Gojcic, Z., Sridhar, S., Guibas, L.J.: Caspr: Learning canonical
spatiotemporal point cloud representations. arXiv preprint arXiv:2008.02792 (2020)
Ronneberger, O., Fischer, P., Brox, T.: U-net: Convolutional networks for biomedical image
segmentation. In: International Conference on Medical image computing and computer-
assisted intervention. pp. 234-241. Springer (2015)

Shao, L., Shah, P., Dwaracherla, V., Bohg, J.: Motion-based object segmentation based on
dense rgb-d scene flow. IEEE Robotics and Automation Letters 3(4), 3797-3804 (2018)
Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: Cnns for optical flow using pyramid, warping,
and cost volume. In: CVPR (2018)

Sun, P.,, Kretzschmar, H., Dotiwalla, X., Chouard, A., Patnaik, V., Tsui, P., Guo, J., Zhou, Y.,
Chai, Y., Caine, B., et al.: Scalability in perception for autonomous driving: Waymo open
dataset. In: CVPR (2020)

Sun, P, Wang, W., Chai, Y., Elsayed, G., Bewley, A., Zhang, X., Sminchisescu, C., Anguelov,
D.: Rsn: Range sparse net for efficient, accurate lidar 3d object detection. In: CVPR (2021)
Tanzmeister, G., Thomas, J., Wollherr, D., Buss, M.: Grid-based mapping and tracking in
dynamic environments using a uniform evidential environment representation. In: ICRA
(2014)

Ushani, A.K., Wolcott, R.W., Walls, J.M., Eustice, R.M.: A learning approach for real-time
temporal scene flow estimation from lidar data. In: ICRA (2017)

Vedula, S., Baker, S., Rander, P., Collins, R., Kanade, T.: Three-dimensional scene flow. In:
ICCV (1999)

Wang, H., Pang, J., Lodhi, M.A., Tian, Y., Tian, D.: Festa: Flow estimation via spatial-temporal
attention for scene point clouds. In: CVPR (2021)

Wang, S., Suo, S., Ma, W.C., Pokrovsky, A., Urtasun, R.: Deep parametric continuous
convolutional neural networks. In: CVPR (2018)

Wang, Z., Li, S., Howard-Jenkins, H., Prisacariu, V., Chen, M.: Flownet3d++: Geometric
losses for deep scene flow estimation. In: WACV (2020)

Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient dense scene
flow from sparse or dense stereo data. In: ECCV (2008)

Wu, W., Wang, Z., Li, Z., Liu, W., Fuxin, L.: Pointpwc-net: A coarse-to-fine network for
supervised and self-supervised scene flow estimation on 3d point clouds. arXiv preprint
arXiv:1911.12408 (2019)

Yan, Y., Mao, Y., Li, B.: Second: Sparsely embedded convolutional detection. Sensors 18(10),
3337 (2018)

Yin, T., Zhou, X., Krahenbuhl, P.: Center-based 3d object detection and tracking. In: CVPR
(2021)

Yurtsever, E., Lambert, J., Carballo, A., Takeda, K.: A survey of autonomous driving: Common
practices and emerging technologies. IEEE access 8, 5844358469 (2020)

Zhao, H., Jia, J., Koltun, V.: Exploring self-attention for image recognition. In: CVPR (2020)
Zhao, H., Jiang, L., Jia, J., Torr, P.H., Koltun, V.: Point transformer. In: ICCV (2021)

